## Exercise 17

Find the angle between the vectors in Exercises 9 to 11. If necessary, express your answer in terms of $\cos ^{-1}$.

## Solution

To obtain the angle $\theta$ between two vectors, $\mathbf{u}$ and $\mathbf{v}$, use the definition of the dot product,

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

and solve this equation for $\theta$.

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

## Exercise 9

$$
\mathbf{u}=-\mathbf{i}+3 \mathbf{j}+\mathbf{k}, \mathbf{v}=-2 \mathbf{i}-3 \mathbf{j}-7 \mathbf{k}
$$

Use the formula for $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{(-\mathbf{i}+3 \mathbf{j}+\mathbf{k}) \cdot(-2 \mathbf{i}-3 \mathbf{j}-7 \mathbf{k})}{\sqrt{(-1)^{2}+3^{2}+1^{2}} \sqrt{(-2)^{2}+(-3)^{2}+(-7)^{2}}} \\
& =\frac{(-1)(-2)+(3)(-3)+(1)(-7)}{\sqrt{11} \sqrt{62}} \\
& =\frac{-14}{\sqrt{11} \sqrt{62}}
\end{aligned}
$$

Take the inverse cosine of both sides to get $\theta$.

$$
\theta=\cos ^{-1}\left(\frac{-14}{\sqrt{11} \sqrt{62}}\right) \approx 122.4^{\circ}
$$

## Exercise 10

$$
\mathbf{u}=-\mathbf{i}+3 \mathbf{k}, \mathbf{v}=4 \mathbf{j}
$$

Use the formula for $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{(-\mathbf{i}+3 \mathbf{k}) \cdot(4 \mathbf{j})}{\sqrt{(-1)^{2}+3^{2}} \sqrt{4^{2}}} \\
& =\frac{(-1)(0)+(0)(4)+(3)(0)}{4 \sqrt{10}} \\
& =0
\end{aligned}
$$

Take the inverse cosine of both sides to get $\theta$.

$$
\theta=\frac{\pi}{2}=90^{\circ}
$$

## Exercise 11

$$
\mathbf{u}=-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \mathbf{v}=-\mathbf{i}-3 \mathbf{j}+4 \mathbf{k}
$$

Use the formula for $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{(-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \cdot(-\mathbf{i}-3 \mathbf{j}+4 \mathbf{k})}{\sqrt{(-1)^{2}+2^{2}+(-3)^{2}} \sqrt{(-1)^{2}+(-3)^{2}+4^{2}}} \\
& =\frac{(-1)(-1)+(2)(-3)+(-3)(4)}{\sqrt{14} \sqrt{26}} \\
& =\frac{-17}{\sqrt{14} \sqrt{26}}
\end{aligned}
$$

Take the inverse cosine of both sides to get $\theta$.

$$
\theta=\cos ^{-1}\left(\frac{-17}{\sqrt{14} \sqrt{26}}\right) \approx 153.0^{\circ}
$$

